On the sensitivity of TG‐119 and IROC credentialing to TPS commissioning errors
نویسندگان
چکیده
We investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.
منابع مشابه
Dosimetric Evaluation of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) Using AAPM TG 119 Protocol
Background: The commissioning accuracy of Volumetric Modulated Arc Therapy (VMAT) need to be evaluated.Objective: To test and evaluate commissioning accuracy of VMAT based on the TG 119 protocols at local institution. Material and Methods: The phantom, structure sets, VMAT and IMRT beam parameter setup, dose prescriptions and planning objectives were following TG 119 guidelines to c...
متن کاملRounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs
During volume-modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out-of-field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap ...
متن کاملSU-E-P-02: Imaging and Radiation Oncology Core (IROC) Houston QA Center (RPC) Credentialing.
PURPOSE To provide information pertaining to IROC Houston QA Center's (RPC) credentialing process for institutions participating in NCI-sponsored clinical trials. METHODS IROC Houston issues credentials for NCI sponsored study groups. Requirements for credentialing might include any combination of questionnaires, knowledge assessment forms, benchmarks, or phantom irradiations. Credentialing r...
متن کاملValidation of Treatment Planning Dose Cal-culations: Experience Working with Medical Physics Practice Guideline 5.a
Recently published Medical Physics Practice Guideline 5.a. (MPPG 5.a.) by American Association of Physicists in Medicine (AAPM) sets the minimum requirements for treatment planning system (TPS) dose algorithm commissioning and quality assurance (QA). The guideline recommends some validation tests and tolerances based primarily on published AAPM task group reports and the criteria used by IROC H...
متن کاملAccuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code
Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...
متن کامل